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Introduction: Backdoor Attacks

▶ Train the model with tons of data.

▶ Then we evaluate its performance with a

holdout dataset.

▶ But what happens with untested data?
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Introduction: Backdoor Attacks

▶ Training time attack

▶ Inject a trigger on some (small) number of

samples

▶ Aim to misclassify samples containing the

trigger while achieving great performance on

clean data

▶ We can create them adding a trigger [1]

▶ Trigger:

▶ Label: “Speed Limit”
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Introduction: Federated Learning

▶ Privacy driven

▶ Datasets remain local

▶ Data can be heterogeneous

▶ Independent and identically distributed data

(IID)

▶ The performance of Non-IID is drastically

reduced [2]

▶ Using warming up could help [2]
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Introduction: Backdoor Attacks in FL

▶ Clients inject the backdoor locally [3]–[5]

▶ After aggregation every client receives a

backdoored model

▶ Some other attacks consider more than a

single attacker [6]
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Introduction: Backdoor Attacks in FL

▶ Clients inject the backdoor locally [3]–[5]

▶ After aggregation every client receives a

backdoored model

▶ Some other attacks consider more than a

single attacker [6]
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Introduction: Inference Attacks in FL

▶ Extract information from clients

▶ For example, model inversion attacks

reconstruct samples used during training [7]

▶ In FL even from a specific client [8], [9]

Figure from [7]
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Sniper Backdoor: Motivation

▶ Some defenses rely on the assumption that all

the clients are being compromised

▶ If more than 50% are compromised, then the

model the networks agree that it has been

compromised

▶ Could we gain knowledge using inference and

then use it for a backdoor attack?

▶ “Is it possible to launch a backdoor attack,

where only targeted (victim) clients get a

backdoored model whereas the remaining

(non-victim) clients get a clean model?”
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Sniper Backdoor: Attack Overview

▶ The server is malicious

▶ Clients do not trust the server and they

anonymize their model uploads

▶ The attacker has to identify and only send a

malicious model to the target client.

▶ The rest of clients should not be affected
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Sniper Backdoor: Attack Overview

1, 2 During the training of FL the attacker keeps track of the submitted anonymous models

1 2 3 4

5 6 7 8
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Sniper Backdoor: Attack Overview

3, 4 The attacker launches a GAN-based model inversion attack

Select the model from a certain epoch

Model between clients will be different at early epochs while more similar close to

convergence

The discriminator is replaced by the model

Thus, the generated data is similar to the clients’

The attacker then has a dataset of clients like data

1 2 3 4

5 6 7 8
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Sniper Backdoor: Attack Overview

5, 6, 7 Clients submit their models anonymously

Since the attacker knows the data used for training, he/she can target the client

precisely

Shadow training with the GAN-generated dataset

Keep a record of the shadow models

Real and shadow models are similar

1 2 3 4

5 6 7 8
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Sniper Backdoor: Attack Overview

8 Having the client identified

The attacker can backdoor a model and submit it to the target client

The rest of the clients receive the clean model

1 2 3 4

5 6 7 8
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Final Remarks: Results

▶ Is it possible to launch a backdoor attack,

where only targeted (victim) clients get a

backdoored model, whereas the remaining

(non-victim) clients get a clean model

0.01 0.025 0.05 0.0750
10
20
30
40
50
60
70
80
90

A
tta

ck
 S

uc
ce

ss
 R

at
e 

(%
)

0.01 0.025 0.05 0.075

C
le

an
 A

cc
ur

ac
y 

D
eg

ra
da

tio
n 

(%
)

IID Non-IID

0.80

0.85

0.90

0.95

1.00

N
on

-I
ID

0 9 1 7

0.001 0.005 0.01 0.015 0.02
0.80

0.85

0.90

0.95

1.00

II
D

0.001 0.005 0.01 0.015 0.02

A
tta

ck
 S

uc
ce

ss
 R

at
e

MNIST
EMNIST
F-MNIST

20



Final Remarks: Results on Defenses

▶ Neural Cleanse or ABS cannot handle nor

source targeted backdoors nor dynamic

backdoors

▶ FL specific countermeasures as Krum,

FoolsGold, Baffle, CRLF do not hold
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Conclusions: Results on Defenses

(1) State-of-the-art defenses do not consider that a single or a subset of clients is being attacked

(2) If the countermeasure is applied by the client itself, the attacker could still adapt the attack

(3) However, relaying on a TTP to check the models could be a possible countermeasure

(4) Differential privacy could also harden the model inversion attack and thus the consequent attack’s

phases

(5) As future work, could we target a single client from a malicious client?
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Thanks for your attention, any questions?
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