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Introduction: Machine Learning

▶ Centralized data

▶ More data = better

▶ Privacy issues
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Introduction: Federated Learning

▶ Privacy driven1

▶ Data is private for each user

▶ Data can be either Independent and

Identically Distributed (IID) or Non-IID

1Attacks have shown that FL’s privacy is broken [1]
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Introduction: Deep Learning

▶ State-of-the-art in many ML tasks

▶ Our work focuses on the image domain

▶ Convolutional layers

▶ More parameters = More complexity
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Introduction: Deep Learning

▶ How do we test DL models?

▶ We use test sets

▶ If the model behaves correctly in the test set,

we say the model is correct

▶ Some works try to understand why [2]
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Introduction: Backdoor attacks 101

▶ What happens with untested samples?

▶ We can create them adding a trigger [3]

▶ Trigger:

▶ Label: “Speed Limit”
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Introduction: Backdoor Attacks in FL

(1) Can we backdoor FL? [4]

(2) Yes, we can... [5]

(3) But, how? [6]

(4) Use a scaling factor λ for scaling the models

(5) Every client receives a backdoored model
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Sniper Backdoor: Motivation

▶ “Is it possible to launch a backdoor attack,

where only targeted (victim) clients get a

backdoored model whereas the remaining

(non-victim) clients get a clean model?”
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Sniper Backdoor: Challenges

▶ The server is malicious

▶ We have no access to the datasets nor the

training procedure

▶ Clients are anonymous
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Sniper Backdoor: Attack Phases

▶ Create the backdoor model

• Get a dataset

▶ Identify the victim client
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Sniper Backdoor: Attack Overview

1, 2 Keep a record of anonymous models
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Sniper Backdoor: Attack Overview

3, 4 Creating synthetic data
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Sniper Backdoor: Attack Overview

5, 6, 7 Identifying the victim
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Sniper Backdoor: Attack Overview

8, 9 Inject the backdoor
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Defenses: Attack Overview

Neural Cleanse [7]
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Final Remarks: Attack Overview

(1) Bypasses “all” the state-of-the-art defenses

(2) Most of the state-of-the-art backdoor defenses

in FL do not apply

(3) We require new defense mechanisms

(4) More exhaustive research has to be done for

this new threat

(5) What about a client being an attacker?
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Thanks for your attention, any questions?
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