

Sniper Backdoor

Single Client Targeted Backdoor Attack in Federated Learning

Gorka Abad 1,2 Servio Paguada 1,2 Oğuzhan Ersoy 1 Stjepan Picek 1 Víctor Julio Ramírez-Durán 2 Aitor Urbieta 2

December 23, 2022

¹Radboud University, the Netherlands

²Ikerlan Technology Research Centre, Spain

Outline

Introduction

Machine Learning

Federated Learning

Deep Learning

Backdoor attacks 101

Backdoor Attacks in FL

Sniper Backdoor

Motivation

Challenges

Attack Phases

Attack Overview

Defenses

Final Remarks

Table of Contents

Introduction

Machine Learning

Federated Learning

Deep Learning

Backdoor attacks 101

Backdoor Attacks in FL

Sniper Backdoor

Motivation

Challenges

Attack Phases

Attack Overview

Defenses

Final Remark

Introduction: Machine Learning

- ▶ Centralized data
- ▶ More data = better
- Privacy issues

Introduction: Federated Learning

- ▶ Privacy driven¹
- ▶ Data is private for each user
- ▶ Data can be either Independent and Identically Distributed (IID) or Non-IID

Step 1	Step 2	Step 3	Step 4
where we work to	Table 1900		
Central server chooses a statistical model to be trained	Central server transmits the initial model to several nodes	Nodes train the model locally with their own data	Central server pools model results and generate one global mode without accessing any data

¹Attacks have shown that FL's privacy is broken [1]

Introduction: Deep Learning

- ► State-of-the-art in many ML tasks
- ▶ Our work focuses on the image domain
- ► Convolutional layers
- ► More parameters = More complexity

Introduction: Deep Learning

- ► How do we test DL models?
- ▶ We use test sets
- ► If the model behaves correctly in the test set, we say the model is correct
- ▶ Some works try to understand why [2]

(b) Explanation

Introduction: Backdoor attacks 101

- ▶ What happens with untested samples?
- ▶ We can create them adding a *trigger* [3]
- ► Trigger:
- ▶ Label: "Speed Limit"

Introduction: Backdoor Attacks in FL

- (1) Can we backdoor FL? [4]
- (2) Yes, we can... [5]
- (3) But, how? [6]
- (4) Use a scaling factor λ for scaling the models
- (5) Every client receives a backdoored model

Table of Contents

Introduction

Machine Learning

Federated Learning

Deep Learning

Backdoor attacks 101

Backdoor Attacks in FL

Sniper Backdoor

Motivation

Challenges

Attack Phases

Attack Overview

Defenses

Final Remark

Sniper Backdoor: Motivation

"Is it possible to launch a backdoor attack, where only targeted (victim) clients get a backdoored model whereas the remaining (non-victim) clients get a clean model?"

Sniper Backdoor: Challenges

- ► The server is malicious
- ► We have no access to the datasets nor the training procedure
- ► Clients are anonymous

Sniper Backdoor: Attack Phases

- ► Create the backdoor model
 - Get a dataset
- ▶ Identify the victim client

1, 2 Keep a record of anonymous models

Sniper Backdoor: Attack Overview

3, 4 Creating synthetic data

Sniper Backdoor: Attack Overview

, **6**, **7** Identifying the victim

Sniper Backdoor: Attack Overview

8, 9 Inject the backdoor

۶

Table of Contents

Introduction

Machine Learning

Federated Learning

Deep Learning

Backdoor attacks 101

Backdoor Attacks in FL

Sniper Backdoo

Motivation

Challenges

Attack Phases

Attack Overview

Defenses

Final Remark

Neural Cleanse [7]

Table of Contents

Introduction

Machine Learning

Federated Learning

Deep Learning

Backdoor attacks 101

Backdoor Attacks in FL

Sniper Backdoor

Motivation

Challenges

Attack Phases

Attack Overview

Defenses

Final Remarks

Final Remarks: Attack Overview

- (1) Bypasses "all" the state-of-the-art defenses
- (2) Most of the state-of-the-art backdoor defenses in FL do not apply
- (3) We require new defense mechanisms
- (4) More exhaustive research has to be done for this new threat
- (5) What about a client being an attacker?

Thanks for your attention, any questions?

- [1] Franziska Boenisch, Adam Dziedzic, Roei Schuster, et al. "When the curious abandon honesty: Federated learning is not private". In: arXiv preprint <a href="mailto:arXi
- [2] Saumitra Mishra, Bob L Sturm, and Simon Dixon. "Local interpretable model-agnostic explanations for music content analysis.". In: ISMIR. Vol. 53. 2017, pp. 537–543.
- [3] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, et al. "Badnets: Evaluating backdooring attacks on deep neural networks". In: IEEE Access 7 (2019), pp. 47230–47244.
- [4] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, et al. "Can you really backdoor federated learning?" In: arXiv preprint arXiv:1911.07963 (2019).
- [5] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, et al. "Attack of the tails: Yes, you really can backdoor federated learning". In: <u>Advances in Neural Information Processing Systems</u> 33 (2020), pp. 16070–16084.
- [6] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, et al. "How to backdoor federated learning". In: International Conference on Artificial Intelligence and Statistics. PMLR. 2020, pp. 2938–2948.
- [7] Bolun Wang, Yuanshun Yao, Shawn Shan, et al. "Neural cleanse: Identifying and mitigating backdoor attacks in neural networks". In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE. 2019, pp. 707–723.